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Abstract

Navier–Stokes characteristic boundary conditions (NSCBC) usually assume the flow to be normal to the boundary
plane. In this paper, NSCBC is extended to account for convection and pressure gradients in boundary planes, resulting
in a 3D-NSCBC approach. The introduction of these additional transverse terms requires a specific treatment for the com-
putational domain’s edges and corners, as well as a suited set of compatibility conditions for boundaries joining regions
associated to different flow properties, as inlet, outlet or wall. A systematic strategy for dealing with edges and corners is
derived and compatibility conditions for inlet/outlet and wall/outlet boundaries are proposed. Direct numerical simulation
(DNS) tests are carried out on simplified flow configurations at first. 3D-NSCBC brings a drastic reduction of flow distor-
tion and numerical reflection, even in regions of strong transverse convection; the accuracy and convergence rate toward
target values of flow quantities is also improved. Then, 3D-NSCBC is used for large-eddy simulation (LES) of a free jet
and an impinging round-jet. Edge and corner boundary treatment, combining multidirectional characteristics and compat-
ibility conditions, yields stable and accurate solutions even with mixed boundaries characterized by bad posedness issues
(e.g. inlet/outlet). LES confirms the effectiveness of the proposed boundary treatment in reproducing mean flow velocity
and turbulent fluctuations up to the computational domain limits.
� 2008 Elsevier Inc. All rights reserved.
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1. Introduction

The treatment of boundary conditions is one of the most recurrent issues in computational fluid dynamics.
Compressible solvers’ accuracy, in general, is strongly sensitive to boundary solution, which may be spoiled by
spurious numerical reflections generated at open boundaries. This motivates the necessity for strategies to
reduce reflection and set up transparent boundary conditions.
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The boundary conditions provide a way to anticipate the flow behavior at the very limit of the computa-
tional domain. The flow properties at the boundaries must derive from the knowledge of the inside of the com-
putational domain, coupled with some approximations of the outside flow features. Departures between inside
and boundary flows add numerical noise to the solutions. High-order numerical schemes widely used in direct
numerical simulation (DNS) and large-eddy simulation (LES), do not dissipate the spurious modes that may
be generated at the boundaries; the boundary conditions must therefore be designed so that physically correct
solutions are produced, while minimizing the amplitude of any extraneous perturbation added to the flow.

The situation gets even more complicated when dealing with turbulent flows, where an excess of numerical
reflection at open boundaries can significantly affect important physical flow properties, such as vorticity. As
opposed to Reynolds-averaged Navier–Stokes computations (RANS), in LES a wide range of length and time
scales is resolved and transported by the flow; the open boundaries are therefore, invested with a complex set
of sound and entropy waves and convected vorticity. Any excess in numerical reflection can lead to the
buildup of spurious oscillations, which, being superposed to the computed solution, negatively affect the phys-
ical properties of the flow itself.

Several approaches have been proposed to tackle boundary conditions. Many of them are oriented toward
the definition of transparent frontiers for computational aero-acoustics (CAA), where the high standards in
this regard, make the task particularly challenging (see [19,9,6,2] for review and applications). Among them,
techniques based on characteristics waves have motivated much attention. Initially developed for hyperbolic
systems of Euler equations, these approaches decompose the flow in terms of characteristic waves traveling in
the direction normal to the boundary, thus reducing the boundary problem to a suitable imposition of the
incoming waves. The identification of incoming waves allows, in principle, a direct control over boundary
reflection, as the boundary condition can be designed to prevent incoming perturbations [21,22] or to damp
their amplitude while allowing smooth transients [15]. An extension to the Navier–Stokes equations has been
thoroughly discussed by Poinsot and Lele [12], who have developed a systematic approach to account for vis-
cous terms, known as Navier–Stokes characteristic boundary conditions (NSCBC). The method has been
extended to multicomponent reactive flows [1,11] with different choices of primitive variables along with
the inclusion of chemical source terms at the domain’s frontiers [17]. Polifke et al. [13] proposed a reduction
of the reflection coefficient for low-frequency normal incident waves, using a ‘‘plane masking” approach for
the linear relaxation term. A low Mach number expansion has been discussed by Prosser [14], in order to
decouple convective and acoustic effects, thus allowing non-reflective conditions for the acoustic length scales.

These methods mostly rely on the assumption that the flow at the boundary can be regarded as locally one-
dimensional, aligned with the normal to the boundary. The incoming waves are therefore computed resorting
to the so-called LODI system, which directly derives from the Navier–Stokes equations written for primitive
variables in characteristic form. The terms involving derivatives in the directions defining the local boundary
plane (convection, pressure gradient and viscous fluxes) are then computed from the interior of the computa-
tional domain, but without any specific coupling with the boundary treatment. In the following, these in-plane
directions are called ‘transverse directions’ and the related terms are called ‘transverse terms’. The single-
dimensionality assumption, combined with transverse terms computed from the known interior, has proven
to perform well when the flow is almost aligned orthogonally to the boundary. Nevertheless, flow distortion
and high reflection appear when the flow crosses the boundary along different directions. The role played by
the transverse terms in these distortions has been carefully identified by Yoo et al. [24], who proposed a mod-
ification to the NSCBC approach for two-dimensional turbulent counterflow flames. They show that an
appropriate treatment of the transverse terms in the computation of incoming waves improves the accuracy
and convergence rate toward target values for selected relaxed quantities, while reducing flow distortion even
in regions characterized by strong transverse convection.

When transverse effects are included in three-dimensional computation of incoming waves, the problem
arises on how to enforce proper boundary conditions on the edges and the corners of the computational
domain. As discussed by Valorani and Favini [23], transverse terms on edges and corners are coupled with
characteristic waves traveling along directions orthogonal to adjacent boundaries. Therefore, three-dimen-
sional characteristic coupled waves must be considered. Furthermore, when different types of boundary con-
ditions have to be enforced, it is in general necessary to prescribe compatibility conditions for those boundary
conditions whose well-posedness is not inherently ensured (e.g. inlet/outlet boundary conditions where veloc-
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ity, temperature and pressure are simultaneously imposed). Not much on this regard can be found in literature
and the formulation of boundary conditions for edges and corners remains a feature somehow related to each
specific problem.

The objective of this paper is threefold. First the NSCBC improvement proposed by Yoo et al. [24], who
included transverse terms in the boundary analysis, is extended to three-dimensional flows. A systematic proce-
dure to deal with three-dimensional computational domain’s edges and corners is then proposed. Finally, com-
patibility conditions for inlet/outlet and wall/outlet nodes are presented. The resulting 3D-NSCBC approach is
tested on simplified configurations. LES results of a turbulent free jet and a turbulent impinging round-jet are
also reported. For the sake of clarity, all the details of the three-dimensional characteristic formulation leading
to the explicit derivation of the equations for the edges and corners solution are recalled in Appendix A.
2. Governing equations

The dynamics of compressible viscous flow is described by the Navier–Stokes equations, which impose the
conservation of mass, momentum and energy within the fluid element. In the present case, the system is aug-
mented with an additional transport equation for a passive scalar Z (diffusing according to the Fick law),
which carries informations on turbulent scalar mixing. In cartesian coordinates (with the Einstein summation
convention) the system of equations reads
oq
ot
þ o

oxi
ðmiÞ ¼ 0; ð1Þ

omi

ot
þ o

oxj
ðmiujÞ þ

op
oxi
¼ osij

oxj
ði ¼ 1; 2; 3Þ; ð2Þ

oqE
ot
þ o

oxi
½ðqE þ pÞui� ¼

o

oxi
ðujsijÞ �

oqi

oxi
; ð3Þ

oqZ
ot
þ o

oxi
ðqZuiÞ ¼

o

oxi
qD

oZ
oxi

� �
; ð4Þ
where q is the fluid mass density, p is the thermodynamic pressure, mi ¼ qui is the momentum density along
the direction xi and qE is the total energy density (kinetic + thermal); under the assumption that the fluid is
Newtonian and described by the ideal single-component gas law, the above system is closed by the following
relations:
p
q
¼ RT ; ð5Þ

qE ¼ 1

2
qukuk þ

p
c� 1

; ð6Þ

Aij ¼
1

2

oui

oxj
þ ouj

oxi

� �
� 1

3
dij

ouk

oxk
; ð7Þ

sij ¼ 2lAij: ð8Þ
Here, T is the absolute temperature, R is the gas constant R�=Mw, where R� ¼ 8:32 J=ðmol KÞ and Mw is the
gas molar weight; c ¼ cp=cv is the ratio between specific heat capacities at constant pressure and constant vol-
ume, which, in the present case, are expressed as
cv ¼
R

c� 1
; ð9Þ

cp ¼ cv þR: ð10Þ
The dynamic viscosity of the fluid l is expressed by the Sutherland’s law:
lðT Þ ¼ lref

T
T ref

� �3=2 T ref þ S
T þ S

: ð11Þ
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Finally, the heat flux along xi, namely qi, is described by the Fourier law, while the thermal conductivity k
and the diffusion coefficient D are expressed from the dynamic viscosity, the Prandtl and Schmidt numbers:
qi ¼ �k
oT
oxi

; k ¼ lcp

Pr
; D ¼ l

qSc
ð12Þ
(see Table 2 for a summary of the parameters’ values used for the test-cases presented in the present paper).

3. Three-dimensional NSCBC

In NSCBC [12] the Navier–Stokes equations are written in their characteristic form to make explicit their
dependency on the acoustic waves traveling across the boundary. Characteristic waves are represented by their
amplitude time variations Li, Mi and N i, corresponding to the three physical-space directions (see Appendix
A for details). The waves propagate in such a way that some of them leave the domain, while the others enter
from outside. Incoming waves must be specified to close the boundary problem, as the outgoing ones can be
computed from interior points and one-sided differences by directly applying their definition (Eqs. (A.16),
(A.26) and (A.37)). The NSCBC approach prescribes that all the incoming wave amplitudes are imposed
under the hypothesis that the flow at the boundary can be regarded as locally one-dimensional and inviscid.
The resulting LODI system (A.20) is used to translate physical boundary conditions, expressed in terms of
time derivatives of the primitive variables, into analytical relations involving the wave amplitude variations,
such that the unknown incoming ones can be computed [12]. Once all the wave amplitudes are known, balance
equations are used to advance the solution in time ((A.17) or (A.18) if the solver integrates the equations in
conservative form).

When the flow is strongly three-dimensional at boundaries, the LODI assumption becomes too restrictive
to keep boundary reflection at an acceptable level and nonphysical flow distortions appear, especially in
regions where the flow is not aligned with the direction normal to the boundary. Furthermore, the pressure
and any other relaxed quantity cannot reach the relevant physical target value in regions where strong con-
vection in the boundary plane exists. Improved results are obtained by including in the computation of incom-
ing wave amplitudes the transverse terms, namely convection and pressure gradients developing in the
boundary plane [24].

Away from edges and corners of the computational domain, transverse terms can be evaluated from the
computed solution using interior points. This direct approach, indeed, does not pose additional issues for inlet
boundaries but, as already mentioned by Yoo et al. [24], can lead to serious numerical instabilities at outflow
boundaries. One effective remedy for this is to add a small relaxation toward a reference value for the trans-
verse terms, thus introducing a transverse damping coefficient b. As it will be shown when presenting results
from selected test-cases, an expression can be proposed to relate b to flow properties and dynamically adjust
this additional parameter.

At edges and corners of three-dimensional simulations a specific treatment is, however, needed. At these
locations, transverse terms in a given boundary plane relate to characteristic waves traveling along directions
that are orthogonal to adjacent boundary planes. The corresponding characteristic waves become coupled,
leading to the need for a 3D-NSCBC approach.

The boundary treatment is first discussed for nodes away from edges and corners, then a specific method is
proposed for edges and corners. In all the developments below, well-posedness of boundary conditions for
Navier–Stokes equations is ensured following the approach used by Poinsot and Lele [12]: inviscid relations,
corresponding to Euler boundary conditions, are first obtained and the correct number of boundary condi-
tions for the Navier–Stokes equations is then achieved supplying additional viscous conditions. For each
boundary type, the modification proposed in the present paper does not affect viscous conditions, which
are then identical to those used by Poinsot and Lele.

3.1. Face boundaries

The solution at a face boundary is advanced in time using the Navier–Stokes equations (A.17) or (A.18).
These equations have been written in terms of wave amplitudes Li.
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For a boundary that is orthogonal to x1, the Li are obtained from their relations with time derivative of
primitive variables, which are given by the system including transverse terms (in plane pressure gradient
and convection) obtained from Eq. (A.17) by neglecting the viscous and diffusive terms D only:
oq
ot þ 1

c2 L2 þ 1
2
ðL5 þ L1Þ

� �
� T 1 ¼ 0;

ou1

ot þ 1
2qc ðL5 � L1Þ � T 2 ¼ 0;

ou2

ot þ L3 � T 3 ¼ 0;
ou3

ot þ L4 � T 4 ¼ 0;
op
ot þ 1

2
ðL5 þ L1Þ � T 5 ¼ 0;

oZ
ot þ L6 � T 6 ¼ 0

8>>>>>>>>>><>>>>>>>>>>:
ð13Þ
with the transverse contribution:
T ¼

� omt
oxt

�ut
ou1

oxt

�ut
ou2

oxt
� 1

q
op
ox2

�ut
ou3

oxt
� 1

q
op
ox3

�ut
op
oxt
� cp out

oxt

�ut
oZ
oxt

0BBBBBBBBBBB@

1CCCCCCCCCCCA
ðt ¼ 2; 3Þ: ð14Þ
An alternative definition of T , using transverse fluxes computed on conservative variables, is given in
Appendix B. The waves Li are determined from this system, once physical boundary conditions are provided
to approximate oq=ot, ou=ot, op=ot, oZ=ot. These physical boundary conditions are now discussed on the basis
of Eq. (13) reorganized in terms of characteristic variables:
op
ot � qc ou1

ot

� �
þ L1 � T1

1 ¼ 0;

c2 oq
ot �

op
ot

� �
þ L2 � T2

1 ¼ 0;
ou2

ot þ L3 � T3
1 ¼ 0;

ou3

ot þ L4 � T4
1 ¼ 0;

op
ot þ qc ou1

ot

� �
þ L5 � T5

1 ¼ 0;
oZ
ot þ L6 � T6

1 ¼ 0;

8>>>>>>>>>><>>>>>>>>>>:
ð15Þ
where Tm
k indicates a characteristic transverse term in the plane perpendicular to xk relevant to the mth char-

acteristic variable
T1
1 ¼ T 5 � qcT 2;

T2
1 ¼ c2T 1 � T 5;

T3
1 ¼ T 3;

T4
1 ¼ T 4;

T5
1 ¼ T 5 þ qcT 2;

T6
1 ¼ T 6:

8>>>>>>>>><>>>>>>>>>:
ð16Þ
3.1.1. Subsonic non-reflecting outflow

The physical boundary condition, which links primitive variables to wave amplitudes, is obtained from the
pressure relaxation condition proposed by Rudy and Strikwerda [15] with an additional transverse relaxation
term as discussed by Yoo et al. [24]. The waves velocities are given by Eqs. (A.8)–(A.10) and depending on
their sign, Li are entering (unknown and needing an equation to be determined) or leaving the domain



5110 G. Lodato et al. / Journal of Computational Physics 227 (2008) 5105–5143
(known). For boundaries orthogonal to x1, depending on their location, the unknown incoming wave is either
L1 (at x1 ¼ Lx) or L5 (at x1 ¼ 0). The relevant boundary condition can be conveniently expressed as follows:
op
ot
þ 1qc

ou1

ot

� �
þ r

cð1�M2Þ
Lx

ðp � p1Þ � bðT/
1 � T

/
1;exÞ ¼ 0; ð17Þ
where r is the pressure relaxation coefficient, M is the maximum Mach number, Lx is the characteristic size of
the computational domain along x1 and b 2 ½0 : 1� is a transverse damping parameter. 1 is a function which
sets the correct sign for the velocity term depending on the value of the wave index /:
1ð/Þ ¼ /� 1

2
� 1 ¼

�1 if / ¼ 1;

þ1 if / ¼ 5:

�
ð18Þ
For most free shear flows, the boundary condition is expected to well behave with T
/
1;ex ¼ 0, as shown in the

next section. However, when an analytical steady solution of the flow is known at the boundary, the target
value of the transverse term T

/
1;ex is obtained applying equations (14) and (16):
) T
/
1;ex ¼ �ût

op̂
oxt
� cp̂

oût

oxt
� 1q̂ĉût

oû1

oxt
ðt ¼ 2; 3Þ; ð19Þ
where the ð̂�Þ accent indicates the known analytical solution for the target flow.
Combining Eq. (17) with the corresponding characteristic equation from system (15), the unknown incom-

ing wave becomes
L/ ¼ r
cð1�M2Þ

Lx
ðp � p1Þ þ ð1� bÞT/

1 þ bT
/
1;ex ð20Þ
with
T
/
1 ¼ T 5 þ 1qcT 2: ð21Þ
Navier–Stokes boundary conditions are obtained by complementing the above inviscid condition with the
following viscous conditions:
os12

ox1

¼ os13

ox1

¼ oq1

ox1

¼ o

ox1

qD
oZ
ox1

� �
¼ 0: ð22Þ
3.1.2. Subsonic non-reflecting inflow

The procedure of Yoo et al. [24] is followed for inflow, away from edges and corner. The inlet is composed
of five entering waves, leading to five closures for boundary conditions. Here it is chosen to impose temper-
ature and velocity and passive scalar; other choices are possible like density or mass flow rate that will not be
discussed here. The closed system reads
op
ot
þ 1qc

ou1

ot

� �
þ g/

qc2ð1�M2Þ
Lx

ðu1 � u10
Þ ¼ 0; ð23Þ

c2 oq
ot
� op

ot

� �
þ g2

qcR
Lx
ðT � T 0Þ ¼ 0; ð24Þ

ou2

ot
þ g3

c
Lx
ðu2 � u20

Þ ¼ 0; ð25Þ

ou3

ot
þ g4

c
Lx
ðu3 � u30

Þ ¼ 0; ð26Þ

oZ
ot
þ g6

c
Lx
ðZ � Z0Þ ¼ 0 ð27Þ
with g1; . . . ; g6 relaxation parameters (g1 and g2 negative) and the subscript 0 denoting target values for the
relevant quantities. In Eq. (23) the index / is equal to 1 or 5 depending whether the inlet is located at
x1 ¼ Lx or x1 ¼ 0, respectively; 1 sets the sign accordingly (Eq. (18)).
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The equations for the unknown entering wave amplitudes are obtained from system (15) closed with Eqs.
(23)–(27):
L/ ¼ g/

qc2ð1�M2Þ
Lx

ðu1 � u10
Þ þ ðT 5 þ 1qcT 2Þ; ð28Þ

L2 ¼ g2

qcR
Lx
ðT � T 0Þ þ ðc2T 1 � T 5Þ; ð29Þ

L3 ¼ g3

c
Lx
ðu2 � u20

Þ þ T 3; ð30Þ

L4 ¼ g4

c
Lx
ðu3 � u30

Þ þ T 4; ð31Þ

L6 ¼ g6

c
Lx
ðZ � Z0Þ þ T 6: ð32Þ
It should be noted that this particular inflow condition does not require any additional viscous condition as
the density q—the only remaining unknown—is obtained from the continuity equation, which does not
involve any viscous term [12].

3.2. Edge boundaries

Supposing that the edge is aligned along x3 (face boundaries composing the edge are normal to x1 and x2),
the system linking primitive variables with amplitude of the waves Li and Mi, traveling in both directions x1

and x2 is obtained from a two-dimensional characteristic analysis (Eq. (A.27)) by neglecting the D term only:
oq
ot þ 1

c2 L2 þ 1
2
ðL5 þ L1Þ

� �
þ 1

c2 M3 þ 1
2
ðM5 þM1Þ

� �
� T 1 ¼ 0;

ou1

ot þ 1
2qc L5 � L1ð Þ þM2 � T 2 ¼ 0;

ou2

ot þ L3 þ 1
2qc ðM5 �M1Þ � T 3 ¼ 0;

ou3

ot þ L4 þM4 � T 4 ¼ 0;
op
ot þ 1

2
ðL5 þ L1Þ þ 1

2
M5 þM1ð Þ � T 5 ¼ 0;

oZ
ot þ L6 þM6 � T 6 ¼ 0

8>>>>>>>>>><>>>>>>>>>>:
ð33Þ
with 0 1
T ¼

� om3

ox3

�u3
ou1

ox3

�u3
ou2

ox3

�u3
ou3

ox3
� 1

q
op
ox3

�u3
op
ox3
� cp ou3

ox3

�u3
oZ
ox3

BBBBBBBBBBB@

CCCCCCCCCCCA
: ð34Þ
A procedure similar to the one discussed for face boundaries may be used. System (33) is combined with phys-
ical boundary conditions to compute the unknown incoming wave amplitude variations of both boundaries.
These wave amplitude variations are now coupled, therefore, in general, a linear system in the unknown waves
has to be solved. An additional problem arises when the boundaries sharing the edge are of different kind; in this
case, not only different characteristic directions have to be considered simultaneously but, depending on the
boundary types, additional compatibility conditions must be introduced to ensure numerical stability.

Note that the wall boundary condition presented in what follows is always considered as adiabatic no-slip,
therefore, the relevant inviscid conditions are augmented by the addition of the following viscous conditions:
qn ¼ 0; qD
oZ
oxn
¼ 0; ð35Þ
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subscript n indicating the direction normal to the wall. Viscous conditions for inflow and outflow boundaries
are enforced as for face boundaries (see Sections 3.1.1 and 3.1.2).

3.2.1. Outflow/outflow edge
Two characteristic-type relations may be written combining the second, the third and the fifth equations in

system (33):
Table
Values
op
ot
þ 1ð/Þqc

ou1

ot

� �
þ L/ þ

M5 þM1

2
� T 5 þ 1ð/ÞqcðM2 � T 2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�T
/
1

¼ 0; ð36Þ

op
ot
þ 1ðwÞqc

ou2

ot

� �
þMw þ

L5 þ L1

2
� T 5 þ 1ðwÞqcðL3 � T 3Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�T
w
2

¼ 0; ð37Þ
where / and w are indices taking either the values 1 or 5 depending on the location of the edge as summarized
in Table 1; 1 is the switch defined in Eq. (18).

The boundary conditions are obtained from Eq. (17) written for u1 and u2:
op
ot
þ 1ð/Þqc

ou1

ot

� �
þ r

cð1�M2Þ
Lx

ðp � p1Þ � bðT/
1 � T

/
1;exÞ ¼ 0; ð38Þ

op
ot
þ 1ðwÞqc

ou2

ot

� �
þ r

cð1�M2Þ
Ly

ðp � p1Þ � bðTw
2 � T

w
2;exÞ ¼ 0; ð39Þ
where T
/
1;ex and T

w
2;ex may be computed from a reference steady flow by applying definition (14) written for

boundaries orthogonal to x1 and x2, respectively:
T
/
1;ex ¼ �ût

op̂
oxt
� cp̂

oût

oxt
� 1ð/Þq̂ĉût

oû1

oxt
ðt ¼ 2; 3Þ; ð40Þ

T
w
2;ex ¼ �ût

op̂
oxt
� cp̂

oût

oxt
� 1ðwÞq̂ĉût

oû2

oxt
ðt ¼ 1; 3Þ: ð41Þ
From Eqs. (36)–(39), the unknown waves are then solution of the system:
L/ þ 1�b
2
Mw ¼ r

cð1�M2Þ
Lx

ðp � p1Þ þ ð1� bÞeT/
1 þ bT

/
1;ex;

1�b
2
L/ þMw ¼ r

cð1�M2Þ
Ly

ðp � p1Þ þ ð1� bÞeTw
2 þ bT

w
2;ex

8>>><>>>: ð42Þ
with the known terms
eT/
1 ¼ T 5 �

Mw�

2
� 1ð/ÞqcðM2 � T 2Þ; ð43Þ

eTw
2 ¼ T 5 �

L/�

2
� 1ðwÞqcðL3 � T 3Þ; ð44Þ
1
of the indices / and w depending on edge location
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where /� ¼ 6� / and w� ¼ 6� w. It should be noted that, since 0 6 b 6 1, system (42) always admits solu-
tion, the determinant of the relevant matrix of coefficient being zero for b ¼ �1 and b ¼ 3; nonetheless, some
care has to be taken in general as, depending on the particular boundaries considered, a check on this regard is
recommended.

3.2.2. Inflow/outflow edge

An analogous procedure as the one used for the outflow/outflow boundary edge could be followed in
this case. On the inflow/outflow edge, in fact, there are five incoming waves on the inflow side and one
incoming wave on the outflow side for a total number of six physical boundary conditions. Therefore, inlet
and outlet boundary conditions could be, in principle, simultaneously imposed. Nonetheless, even allowing
smooth transients for pressure, the two boundary conditions have shown problems of stability when simul-
taneously imposed. A simple remedy, which has proven effective for the configurations studied in this
work, is to set to zero the incoming wave amplitude relevant to the outflow boundary (‘‘perfectly non-
reflecting” outflow). In this way, the pressure is left free to adapt to the local flow field and tends anyway
to the expected value due to the effect of the neighboring regions. Furthermore, as the only unknown wave
amplitude on the outflow side is directly imposed, the edge become uncoupled on the two characteristic
directions and the remaining incoming waves can be computed directly from system (33) and Eqs. (23)–
(27).

Supposing for instance the inlet normal to x1 and the outflow normal to x2, the expression for the unknown
wave amplitude variations are
Mw ¼ 0 ðcompatibility conditionÞ; ð45Þ

L/ ¼ g/

qc2ð1�M2Þ
Lx

ðu1 � u10
Þ �Mw�

2
þ T 5 þ 1ð/ÞqcðT 2 �M2Þ; ð46Þ

L2 ¼ g2

qcR
Lx
ðT � T 0Þ �M3 þ ðc2T 1 � T 5Þ; ð47Þ

L3 ¼ g3

c
Lx
ðu2 � u20

Þ þ 1ðwÞ
2qc

Mw� þ T 3; ð48Þ

L4 ¼ g4

c
Lx
ðu3 � u30

Þ �M4 þ T 4; ð49Þ

L6 ¼ g6

c
Lx
ðZ � Z0Þ �M6 þ T 6; ð50Þ
where the indices / and w and the value of 1 can be obtained from Table 1 and Eq. (18) and w� ¼ 6� w. The
equation for L3 has been obtained using the following identity:
1

2qc
ðM5 �M1Þ ¼

1ðwÞ
2qc
ðMw �Mw� Þ: ð51Þ
3.2.3. Wall/outflow edge

On this kind of edge, in principle, one should impose the pressure for what concerns the outlet condition,
and velocity for what concerns the wall condition (the time derivative of the velocity component normal to the
wall is set to zero). As suggested by Poinsot and Lele [12], just imposing all these quantities at the same time is
not effective, but allowing smooth transient for the pressure, namely relaxing outlet pressure, improves the
stability of the boundary condition.

Let the wall be normal to x1 and the outflow be normal to x2. Since the velocity at the wall is zero, the only
non-zero wave amplitude variations are L1;5 and M1;5 (those characterized by characteristic speeds u1 � c
and u2 � c, respectively). T 1, T 2, T 3 and T 5 are zero as well. The physical boundary conditions are expressed
by
ou1

ot
¼ 0 ð52Þ
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and Eq. (17) (written for u2). From system (33) the relevant equations are
ou1

ot
þ 1

2qc
ðL5 � L1Þ ¼ 0; ð53Þ

op
ot
þ 1ðwÞqc

ou2

ot

� �
þMw þ

1

2
ðL5 þ L1Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
�T

w
2

¼ 0 ð54Þ
and the solving system for the unknown L/ and Mw reads
L/ ¼ L/� ;

Mw ¼ r cð1�M2Þ
Ly
ðp � p1Þ � ð1� bÞL/� þ bT

w
2;ex

(
ð55Þ
with /� ¼ 6� /. Velocity components u2 and u3 are simply forced to zero and T
w
2;ex is expressed by Eq. (41).

3.3. Corner boundaries

The system relating primitive variables with the characteristic waves is obtained from Eq. (A.38) by neglect-
ing the D term as before
oq
ot þ 1

c2 L2 þ 1
2
ðL5 þ L1Þ

� �
þ 1

c2 M3 þ 1
2
ðM5 þM1Þ

� �
þ 1

c2 N 4 þ 1
2
ðN 5 þN 1Þ

� �
¼ 0;

ou1

ot þ 1
2qc ðL5 � L1Þ þM2 þN 2 ¼ 0;

ou2

ot þ L3 þ 1
2qc ðM5 �M1Þ þN 3 ¼ 0;

ou3

ot þ L4 þM4 þ 1
2qc ðN 5 �N 1Þ ¼ 0;

op
ot þ 1

2
ðL5 þ L1Þ þ 1

2
ðM5 þM1Þ þ 1

2
ðN 5 þN 1Þ ¼ 0;

oZ
ot þ L6 þM6 þN 6 ¼ 0:

8>>>>>>>>>><>>>>>>>>>>:
ð56Þ
The procedure is similar to the one used for face and edge boundaries, except that in this case all the trans-
verse terms are expressed by wave amplitude variations. Once the incoming waves are solved using physical
boundary conditions, viscous conditions are enforced and the boundary nodes are advanced in time.

As in Section 3.2, we will only consider adiabatic no-slip wall boundary conditions and the relevant addi-
tional viscous conditions are obtained from Eq. (35). Viscous conditions for inflow and outflow boundaries
are enforced as for face boundaries (see Sections 3.1.1 and 3.1.2).

3.3.1. Wall/outflow/outflow corner

Let the wall be normal to x1 and the outflows be normal to x2 and x3. Since the velocity at the wall is zero,
the only non-zero wave amplitude variations are L1;5, M1;5 and N 1;5 (those characterized by characteristic
speeds u1 � c, u2 � c and u3 � c, respectively). The boundary conditions are expressed by Eq. (17) (written
for u2 and u3) and Eq. (52). From system (56) the equations to be considered are
ou1

ot
þ 1

2qc
L5 � L1ð Þ ¼ 0; ð57Þ

op
ot
þ 1ðwÞqc

ou2

ot

� �
þMw þ

L5 þ L1 þN 5 þN 1

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�T

w
2

¼ 0; ð58Þ

op
ot
þ 1ðvÞqc

ou3

ot

� �
þN v þ

L5 þ L1 þM5 þM1

2|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�T

v
3

¼ 0; ð59Þ
where w and v are indices taking either the values 1 or 5 depending on the location of the corner and 1 is the
switch defined by Eq. (18). In particular, w is obtained from Table 1 and v, by analogy, is equal to 1 for x3 ¼ Lz

and 5 for x3 ¼ 0. The incoming wave relevant to the wall condition is readily solved by setting L1 ¼ L5; there-
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fore, the remaining unknown waves can be solved by applying a procedure similar to the one described for
outflow/outflow edges. The solving system then reads
L/ ¼ L/� ;

Mw þ 1�b
2
N v ¼ r cð1�M2Þ

Ly
ðp � p1Þ þ ð1� bÞeTw

2 þ bT
w
2;ex;

1�b
2
Mw þN v ¼ r cð1�M2Þ

Lz
ðp � p1Þ þ ð1� bÞeTv

3 þ bT
v
3;ex

8>><>>: ð60Þ
with T
w
2;ex computed from Eq. (41) and
eTw
2 ¼ �L/� �

1

2
N v� ; ð61Þ

eTv
3 ¼ �L/� �

1

2
Mw� ; ð62Þ

T
v
3;ex ¼ �ût

op̂
oxt
� cp̂

oût

oxt
� 1ðvÞq̂ĉût

oû3

oxt
ðt ¼ 1; 2Þ; ð63Þ
where /� ¼ 6� /, w� ¼ 6� w and v� ¼ 6� v.

3.3.2. Inflow/outflow/outflow corner
The presence of the inlet condition makes it necessary to impose compatibility conditions. In analogy to

what is done on inflow/outflow boundaries, the ‘‘perfectly non-reflecting” condition is imposed on the out-
flows, thus decoupling the inlet from the outlets.

Let the inflow be normal to x1 and the outflows be normal to x2 and x3, respectively. Then, the compatibility
conditions are
Mw ¼ 0; ð64Þ
N v ¼ 0 ð65Þ
and the unknown wave amplitude variations on the inflow side are directly solved from the system (56) and the
boundary conditions (23)–(27):
L/ ¼ g/

qc2ð1�M2Þ
Lx

ðu1 � u10
Þ �Mw� þN v�

2
� 1ð/ÞqcðM2 þN 2Þ; ð66Þ

L2 ¼ g2

qcR
Lx
ðT � T 0Þ �M3 �N 4; ð67Þ

L3 ¼ g3

c
Lx
ðu2 � u20

Þ þ 1ðwÞ
2qc

Mw� �N 3; ð68Þ

L4 ¼ g4

c
Lx
ðu3 � u30

Þ þ 1ðvÞ
2qc

N v� �M4; ð69Þ

L6 ¼ g6

c
Lx
ðZ � Z0Þ �M6 �N 6 ð70Þ
with w� ¼ 6� w and v� ¼ 6� v. An analogous identity as in Eq. (51) has been used to derive the equation for
L4.

3.3.3. Outflow/outflow/outflow corner

The three characteristic equations relevant to the unknown wave amplitude variations are obtained from
system (56):
op
ot
þ 1ð/Þqc

ou1

ot

� �
þ L/ þ

M5 þM1 þN 5 þN 1

2
þ 1ð/ÞqcðM2 þN 2Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�T
/
1

¼ 0; ð71Þ
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op
ot
þ 1ðwÞqc

ou2

ot

� �
þMw þ

L5 þ L1 þN 5 þN 1

2
þ 1ðwÞqcðL3 þN 3Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�T
w
2

¼ 0; ð72Þ

op
ot
þ 1ðvÞqc

ou3

ot

� �
þN v þ

L5 þ L1 þM5 þM1

2
þ 1ðvÞqcðL4 þM4Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

�T
v
3

¼ 0: ð73Þ
The three necessary boundary conditions are obtained from Eq. (17) plus analogous relations for u2 and u3.
The unknown waves are then computed by solving the following system:
L/ þ 1�b
2
Mw þ 1�b

2
N v ¼ r

c 1�M2ð Þ
Lx
ðp � p1Þ þ ð1� bÞeT/

1 þ bT
/
1;ex;

1�b
2
L/ þMw þ 1�b

2
N v ¼ r

c 1�M2ð Þ
Ly
ðp � p1Þ þ ð1� bÞeTw

2 þ bT
w
2;ex;

1�b
2
L/ þ 1�b

2
Mw þN v ¼ r

c 1�M2ð Þ
Lz
ðp � p1Þ þ ð1� bÞeTv

3 þ bT
v
3;ex

8>>>>><>>>>>:
ð74Þ
with T
/
1;ex, T

w
2;ex and T

v
3;ex obtained from Eqs. (40), (41) and (63), respectively and
eT/
1 ¼ �

Mw� þN v�

2
� 1ð/ÞqcðM2 þN 2Þ; ð75Þ

eTw
2 ¼ �

L/� þN v�

2
� 1ðwÞqcðL3 þN 3Þ; ð76Þ

eTv
3 ¼ �

L/� þMw�

2
� 1ðvÞqcðL4 þM4Þ; ð77Þ
where /� ¼ 6� /, w� ¼ 6� w and v� ¼ 6� v. Observe that the determinant of the relevant coefficients matrix
is � 1

4
b3 þ 3

4
bþ 1

2
and is zero for b ¼ �1 (two coincident roots) and b ¼ 2, therefore, system (74) always admits

solution for b 2 ½0 : 1�.

4. Results

Tests of 3D-NSCBC have been performed by means of a parallel solver based on the explicit finite volumes
(FV) scheme for cartesian grids. The convective terms are computed resorting to the fourth-order centered
skew-symmetric-like scheme proposed by Ducros et al. [4], while the diffusive terms are computed using a
fourth-order centered scheme. In LES tests, a blend of second- and fourth-order artificial dissipation terms
[20,18] is added in order to suppress spurious oscillations and damp high-frequency modes. Time integration
is performed using a third-order Runge–Kutta scheme [7]. Within the framework of the FV scheme, the
boundary problem reduces to the computation of boundary fluxes. On the other hand, the NSCBC approach
is generally well suited for finite differences (FD) schemes, therefore its implementation, in the present case,
requires the use of a hybrid FV–FD scheme at the boundary. We compute, then, boundary fluxes using values
of the flow variables computed on an extra grid point located at the center of each computational cell’s bound-
ary face, the extra nodes being computed using the FD approach in order to integrate the relevant equation in
conservative form (see Eqs. (A.18), (A.28) and (A.39)).

All the tests presented in the following sections have been performed using air and the relevant properties
are summarized in Table 2.

4.1. Single vortex test-case

The first test is the two-dimensional compressible vortex convected through a non-reflecting boundary. This
is a typical test used to evaluate boundary conditions and it is particularly suited to assess non-reflecting
outflows for turbulent flow simulations. The configuration corresponds to a single vortex superimposed on
a uniform flow field aligned along the x1-direction. The initial flow field is defined in terms of the stream func-
tion as



Table 2
Air properties

Value Ref.

Mw 28:9� 10�3 kg=mol Eq. (5)
c 1.4 Eq. (9)
Pr 0.72 Eq. (12)
Sc 0.72 Eq. (12)
PrT 0.90
ScT 0.90
lref 1:827� 10�5 kg=ðm sÞ Eq. (11)
T ref 291.15 K Eq. (11)
S 120.0 K Eq. (11)

PrT and ScT are the turbulent Prandtl and Schmidt numbers, respectively, which have been used in LES computations.

G. Lodato et al. / Journal of Computational Physics 227 (2008) 5105–5143 5117
W ¼ Cv exp � r2

2R2
v

� �
þ U 0x2; ð78Þ

u1 ¼
oW
ox2

; ð79Þ

u2 ¼ �
oW
ox1

; ð80Þ
where Cv is the vortex strength, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2

p
is the radial distance from the reference frame’s x3 axis and Rv is

the vortex radius. U 0 is the speed of the uniform flow field along x1. The pressure, density and temperature
can be obtained from an analytical solution. In fact, it can be shown [3] that the pressure distribution is solu-
tion of
op
or
¼ qu2

h

r
; ð81Þ
where uh is the tangential velocity field in a reference frame attached to the vortex center:
uh ¼
Cvr

R2
v

exp � r2

2R2
v

� �
: ð82Þ
Assuming that the temperature is constant and equal to T 0, the initial pressure and density distributions can
be computed as
pðrÞ ¼ p1 exp � c
2

Cv

cRv

� �2

exp � r2

R2
v

� �" #
; ð83Þ

qðrÞ ¼ pðrÞ
RT 0

ð84Þ
with c ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
cRT 0

p
the sound speed.

For the present tests, Cv was set at 5� 10�3 m2=s, Rv was set at 10% of the domain size L; p1 and T 0 were
1 atm, and 300 K, respectively.

Three test-cases are presented with U 0 equal to 2 m/s, 200 m/s and 300 m/s, respectively, in order to assess
3D-NSCBC at different Mach numbers (Ma = 0.00575, 0.575 and 0.863, respectively, based on the velocity
U 0). The Reynolds number (computed from the velocity U 0 and the vortex radius Rv) for the three tests is
about 166, 16,600 and 24,900, respectively.

The computational domain is a square of dimension L ¼ 0:013m with uniform U 0 inlet velocity at the left
(x1 ¼ �0:0065 m) boundary, and non-reflecting outflow at the right boundary; the relaxation parameter for
pressure r was equal to 0.28 for all the tests, which corresponds to the optimal value proposed by Rudy
and Strikwerda [15]. Increasing this value leads to a more reflective boundary condition. All the other bound-
aries were periodic.
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Figs. 1–3 show a comparison of results obtained using the standard NSCBC non-reflecting outflow and the
3D-NSCBC. The represented quantities are the pressure field, the vorticity contours, the longitudinal velocity
contours and the contours of the velocity gradient tensor invariant Q defined as
Q ¼ � 1

2

oui

oxj

ouj

oxi
¼ � 1

2
SijSij �

1

2
x2

� �
; ð85Þ
where Sij is the strain tensor and x is the vorticity vector (�kij is the Levi–Civita symbol):
Sij ¼
1

2

oui

oxj
þ ouj

oxi

� �
; ð86Þ

xi ¼ �ijk
ouk

oxj
: ð87Þ
The frames have been taken at three different times and each figure refers to a different Mach number test.
The pressure, in particular, is expressed in terms of its relative value, with respect to the far field pressure p1,
normalized by the initial maximum pressure drop at the center of the vortex:
p�ðx; tÞ ¼ pðx; tÞ � p1
pð0; 0Þ � p1

: ð88Þ
The initial map of p� is then expected to be equal to 1 in the vortex center and 0 in the far field; once the
vortex has left the domain, p� is expected to be identically 0 all over the domain.

All the computations have been done setting T1
1;ex ¼ 0 (see Eq. (20)); it is interesting to note that, under this

particular assumption—motivated by the fact that no transverse terms are expected for such a flow after the
vortex has left the domain—the standard LODI assumption is retrieved in the limit of the transverse damping
parameter b equal to 1. On the other hand, from numerical tests performed, it appears that in general the opti-
mal value for b is related to the typical Mach number for the specific flow. For the vortex problem, indeed, the
best choice for the transverse relaxation coefficient is
b ’ Ma ¼ U 0ffiffiffiffiffiffiffiffiffiffiffiffi
cRT 0

p : ð89Þ
For Ma P 1, therefore, we would expect the modified boundary condition to recover the standard LODI
assumption, which, in agreement with the Ma = 1.1 test-case presented by Poinsot and Lele [12], produces
negligible flow distortion and no acoustic waves re-entering the domain as the flow regime is supersonic.

When the flow is subsonic, standard NSCBC is still able to prevent fairly well distortion of vorticity iso-
lines when the vortex leaves the domain; this is true for Ma ¼ 0:575 and Ma ¼ 0:863 but not for very low Mach
number flows (see Fig. 1(a)), as already shown by Prosser [14], where vorticity contours undergo significant
distortion at the boundary. Furthermore, the standard non-reflecting boundary produces significant distortion
of the longitudinal velocity and Q contours: also in this case, the effect is more and more pronounced when
reducing the Mach number but it seems that these quantities are slightly more affected (the flow tends to align
orthogonally to the boundary and a disturbance in the strain is produced). On the other hand, the pressure
field shows a somehow opposed behavior: boundary generated pressure noise amplitude becomes more and
more important when increasing the Mach number but, obviously, also less and less able to re-enter the
domain. For the Ma = 0.575 test, a pressure perturbation with a total amplitude that is about 43 times higher
than the initial vortex pressure drop is observed at the boundary (see Fig. 2(a)). Nonetheless, even at low
Mach, the pressure field is significantly distorted as shown in Fig. 4(a).

The proposed 3D-NSCBC produces almost no distortion in vorticity, longitudinal velocity and Q contours
meaning that vorticity is well conserved and no additional strain is generated at the boundary for all the Mach
numbers (Figs. 1–3(b–d–f)). Furthermore, the pressure field distortion is dramatically reduced and the pres-
sure perturbation amplitude is reduced of about a factor 6, 214 and 60 for the low, mid and high Mach
test-cases, respectively. Pressure contours for the low Mach number case are shown in Fig. 4(b) where the
expected profiles—concentric circles—are quite well reproduced.



Fig. 1. Vortex test: Ma ¼ 0:00575. Standard NSCBC (a–c–e) and 3D-NSCBC (b–d–f). Normalized pressure field (see Eq. (88)) and
longitudinal velocity contours (a, b); vorticity contours (c, d); Q contours (e, f). Frames at increasing time from left to right.
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Fig. 2. Vortex test: Ma = 0.575. Standard NSCBC (a–c–e) and 3D-NSCBC (b–d–f). Normalized pressure field (see Eq. (88)) and
longitudinal velocity contours (a, b); vorticity contours (c, d); Q contours (e, f). Frames at increasing time from left to right.
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Fig. 3. Vortex test: Ma = 0.863. Standard NSCBC (a–c–e) and 3D-NSCBC (b–d–f). Normalized pressure field (see Eq. (88)) and
longitudinal velocity contours (a, b); vorticity contours (c, d); Q contours (e, f). Frames at increasing time from left to right.
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Fig. 4. Vortex test: pressure contours as the vortex crosses the boundary (Ma = 0.00575). Standard NSCBC non-reflecting outflow (a);
3D-NSCBC non-reflecting outflow (b).
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Fig. 5. Vortex test: time evolution of the relative error in pressure with respect to the benchmark solution on the extended domain.
Sampling point is located at the boundary, on the vortex centerline; tref ¼ L=ð5U 0Þ.
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Fig. 5 shows, for the three test-cases, the error on the computed centerline boundary pressure (at x1 ¼ L=2
and x2 ¼ 0) relative to a benchmark solution computed over an extended domain of length 2L:
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erðx; tÞ ¼
pðx; tÞ � p0ðx; tÞ

p0ðx; tÞ ; ð90Þ
where x denotes the sampling location and p0 is the pressure computed on the benchmark simulation.
As expected, the improvement with the modified boundary condition is more evident at higher Mach num-

bers where the amplitude of the pressure disturbance generated using the LODI non-reflecting outflow is
higher; in these cases, using the modified approach, the spurious pressure wave is almost completely avoided
and the computed solution follows quite well the benchmark solution. Even at low Mach, the new proposed
method reduces the error of about a factor 2. In any case, the novel approach avoids any oscillatory behavior:
the relative error is always positive during all the vortex transition event, meaning that the pressure drop at the
vortex core is slightly under-predicted when the vortex reaches the boundary.

4.2. Single vortex with flow inversion

Another two-dimensional vortex test is presented in this section. The vortex strength Cv has now been
increased in order to produce a relatively strong reversed flow at the outflow. This is a particularly stringent
test for non-reflecting boundary conditions, as the reversed flow requires the specification of additional infor-
mation, coming from the outside of the computational domain, which is hard to be prescribed a priori.

For the present test, Cv ¼ 3� 10�1 m2=s, Rv was set at 10% of the domain size L, p1 ¼ 1 atm, T 0 ¼ 300 K
and the convective velocity U 0 was set at 100 m/s (Ma ¼ 0:286 and Re ¼ qU 0Rv=l ’ 8300). The relaxation
parameter for pressure r was set at 0.28 and the transverse relaxation parameter b ¼ 0:286 ðT1

1;ex ¼ 0Þ.
The value of Cv is now high enough to create a region of reversed flow, as it can be observed in the initial

velocity profile in Fig. 6, where horizontal velocity attains a negative peak of about 40 m/s for
0:0007 < x2 < 0:002. In those parts of the outflow boundary where reversed flow is created, the standard per-
fectly non-reflecting procedure is applied and all the entering waves traveling with convective velocity u1—
namely, L2, L3, L4 and L6—are set to zero.

Fig. 7 shows the behavior of the 3D-NSCBC technique compared to the standard NSCBC in terms of pres-
sure error; as in the previous section, the error has been estimated over a benchmark solution computed on an
extended computational domain (two times longer). The top plot shows a normalized global error measure
defined as
eðtÞ ¼
P

i;j;kðpi;j;kðtÞ � p0
i;j;kðtÞÞ

2
h i1=2

P
i;j;kðp0

i;j;kðtÞÞ
2

h i1=2
; ð91Þ
where the i; j; k subscript refers to the grid location and p0 is the pressure computed on the benchmark sim-
ulation. The bottom plot shows the relative error measured on a point located at the outflow boundary on the
vortex centerline (see Eq. (90)).

Fig. 8 shows the normalized global error in vorticity, which is defined in analogy with Eq. (91) as
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Fig. 6. Vortex test with flow reversal: initial u1 velocity profile along a vertical plane passing through the vortex center.



0.0e+00

1.0e-02

2.0e-02

3.0e-02

ε

Standard NSCBC
3D-NSCBC

0.0e+00

5.0e-02

1.0e-01

 0  1  2  3  4  5

ε P

t/t ref
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exðtÞ ¼
P

i;j;kðxi;j;kðtÞ � x0
i;j;kðtÞÞ

2
h i1=2

P
i;j;kðx0

i;j;kð0ÞÞ
2

h i1=2
: ð92Þ
Even when the vortex strength is enough to create flow inversion at the outflow, a certain improvement is
observed over the standard NSCBC approach, when using the 3D-NSCBC technique. In terms of normalized
global measures, pressure error is reduced by a factor of about 2; with regards to the vorticity, the error peak is
more than four times less than in the simulation performed with standard mono-dimensional boundary con-
ditions. This is not surprising, as the 3D-NSCBC approach is expected to get advantage by the inclusion of
transverse effects, therefore allowing a correct propagation of vorticity across the boundary.

4.3. Vortex dipole

In this section a test is presented concerning a convected dipole of co-rotating vortices. This problem is
characterized by a certain level of unsteadiness as the two vortices slowly rotate around each other. The flow
field is initialized with the following stream function [14]:
W ¼ Cv exp � r2
1

2R2
v

� �
þ exp � r2

2

2R2
v

� �� �
þ U 0x2 ð93Þ
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with
Fig. 9.
bound
(botto
r1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ ðx2 þ dÞ2
q

; ð94Þ

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ ðx2 � dÞ2
q

: ð95Þ
The vortex strength Cv was equal to 1:25� 10�3 m2=s, Rv and d were set at 10% and 15% of the transverse
domain size L, respectively and the free-stream velocity U 0 was set at 0.5m/s (Ma=0.00144 and
Re ¼ qU 0Rv=l ’ 42). The relaxation parameter for pressure r and the transverse relaxation parameter b were
0.28 and 0.00144, respectively ðT1

1;ex ¼ 0Þ.
Again in this case we performed a reference simulation over a longer domain of length 2L in order to have a

benchmark solution to compare with. The relevant results, in terms of pressure (Eqs. (90) and (91)) and vor-
ticity (Eq. (92)) errors are shown in Figs. 9 and 10, respectively. Local relative error, in particular, has been
sampled at the boundary on two points, P1 and P2, corresponding approximately to the upper and lower vor-
tex centers, respectively.

Results, both in terms of pressure and vorticity errors, are generally in line with those presented in the pre-
vious sections. It should be noted that, due to the slow rotation of the two vortices around each other, the
lower and the upper vortex’s centers cross the outflow boundary at different times, namely t=tref ’ 2:1 and
t=tref ’ 3:2, respectively (as it was inferred observing the pressure field computed on the benchmark solution).
As the maximum normalized pressure error is, in general, attained at the moment the vortex core leave the
domain, the two peaks in the global normalized error curve (Fig. 9 on top) indicate precisely those two
moments. Interestingly, the standard NSCBC boundary produces a shift to the left of the peaks: the pressure
field is perturbed in such a way that the two vortices seem to leave the domain earlier than expected. On the
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Vortex dipole test: time evolution of the pressure error. Global normalized error (top); relative error for a point located at the
ary, on the upper vortex centerline (middle); relative error for a point located at the boundary, on the lower vortex centerline
m); tref ¼ L=ð5U 0Þ.
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other hand, no shift is observed in the error curve relevant to the simulation performed using the 3D-NSCBC
outflow.

Again, the most evident improvement is obtained in terms of vorticity, the relevant normalized global error
is about three times lower when using the 3D-NSCBC technique.

Fig. 11 shows the normalized pressure p� (see Eq. (88)) and the iso-contours of the longitudinal velocity u1

at three consecutive instants in time. The benchmark solution over the first half of its computational domain is
depicted on top (Fig. 11(a)), the solution computed using the 3D-NSCBC approach in the middle (Fig. 11(b))
and the solution computed using the standard NSCBC at the bottom (Fig. 11(c)). The frames have been cho-
sen to show the moment the lower vortex leaves the domain. The 3D-NSCBC is still able to allow a fairly good
reproduction of the expected solution, both in terms of pressure map and velocity field. On the other hand, the
Fig. 11. Vortex dipole test. Benchmark solution on first half of domain (a), 3D-NSCBC (b) and Standard NSCBC (c) on full domain.
Normalized pressure field (see Eq. (88)) color map and longitudinal velocity contours. Frames at increasing time from left to right.
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standard NSCBC produces a strong perturbation to the pressure field—a pressure perturbation with a total
amplitude of about 370% the initial pressure drop is observed in the second frame of Fig. 11(b)—and the vec-
tor field becomes quite distorted, especially after the lower vortex has left the domain.

4.4. Spherical pressure wave

The fourth test-case is a tridimensional flow configuration designed to assess the behavior of the proposed
approach for edges and corners. The computational domain is a cube of side L ¼ 0:013 m with non-reflecting
outflows on all the six faces, Outflow/outflow edge conditions on all the 12 edges and Outflow/outflow/out-
flow corner conditions on all the eight corners.

The pressure field was initialized with a spherical pressure pulse of amplitude d:
pðrÞ ¼ p1 1þ d exp � r2

2R2
p

 !" #
; ð96Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ x2
2 þ x2

3

p
is the distance from the center of the computational domain and Rp is the character-

istic dimension of the pressure pulse. Assuming that the temperature is constant and equal to T 0, the initial
density distribution can be computed from the state equation: qðrÞ ¼ pðrÞ=ðRT 0Þ.

For the present test, d was set at 0.001, Rp was set at 5% of the domain size L, p1 ¼ 1 atm, and T 0 ¼ 300 K.
The flow field was initialized at rest and then left to evolve in order to compare the evolution of the spherical
pressure wave front—especially when approaching the computational domain edges and corners—when using
standard NSCBC and 3D-NSCBC approach.

As in the previous test, the computation was done setting T�k;ex ¼ 0 (superscript � equal to 1 or 5 depending
on the outflow’s location and k ¼ 1; 2; 3) over all the outflows, as the steady state is expected to be character-
ized by uniform pressure and zero velocity. With regards to the transverse damping parameter b, considering
what has been observed in the vortex test-case, it seemed reasonable to use a value somehow related to a typ-
ical Mach number for this particular flow. A possible choice is then the maximum Mach number relevant to
the local fluid displacement produced by the acoustic wave. As it will be shown, this simple approach gives
fairly good results. On the other hand, some tests carried out varying b have given an optimal value of about
0.5, which is 4 order of magnitude higher than the mentioned Mach number. We report in what follows the
results from three tests which have been made changing both the transverse relaxation coefficient and the pres-
sure relaxation coefficient: b ¼ Mamax and r ¼ 0:28; b ¼ Mamax and r ¼ 3:00; b ¼ 0:5 and r ¼ 0:28.

Qualitative results in terms of pressure field have been extracted over the two cutting planes P1 and P2
depicted in Fig. 12. These planes were chosen to assess the pressure field distortion on corners and edges,
respectively.

With regards to test T3, Fig. 13 shows the pressure field and pressure contours, at two slightly different time-
steps, when the pressure wave fronts are well cut by the domain boundaries. As expected, the LODI assumption
(standard NSCBC) is too restrictive for such a tridimensional flow and the introduction of transverse effects at
the boundary helps in reducing flow distortion, especially in regions where the flow field is not perpendicular to
the outlet (i.e. toward edges and corners). The 3D-NSCBC technique, instead, is able to preserve pressure wave
front curvature, whereas the standard non-reflecting outflow shows a tendency to reduce curvature or even to
reverse it (see, for instance, pressure contours at the top left corner of Fig. 13(c)). The level of numerical reflec-
tion is significantly reduced too, as it can be observed in the region just behind the pressure wave. The results
from tests T1 and T2 (not shown) are slightly worse but still better than those obtained with the LODI assump-
tion. Moreover, no significant difference has been observed when increasing r, meaning that the modified
NSCBC allow a certain freedom in the choice of the pressure relaxation coefficient.

It should be noted that the present configuration is a particularly tough test-case for both NSCBC and 3D-
NSCBC non-reflecting outflows. The pressure wave, as expected, is accompanied by two opposed local dis-
placements of equal amplitude, as it is shown in Fig. 14, where the velocity field is superimposed to the pres-
sure map. The presence of local back-flow regions at the outlet poses the additional problem about how
incoming characteristic waves traveling with the convective velocity (i.e. characteristic waves with indices 2,
3, 4 and 6) should be imposed. Previous tests have shown that just ‘‘ignoring” the possibility of a reversed flow



Fig. 12. Spherical pressure wave test: position of the cutting planes P1 and P2 and of the sampling locations L1, L2 and L3.

Fig. 13. Spherical pressure wave test T3: pressure map and pressure contours on plane P1 (a,b) and P2 (c,d). Standard NSCBC non-
reflecting outflows (a, c); 3D-NSCBC non-reflecting outflows (b, d).
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event and keep computing the relevant characteristic wave amplitudes using interior points may lead to insta-
bility problems, especially when the back-flow is particularly persistent in time. An efficient solution is to set
these convected incoming waves to zero in regions of local back-flow. The drawback of this simplistic
approach is, of course, a slight reduction of boundary transparency.

A measure of the error has been extracted using a benchmark solution computed on a two times wider
domain. Three different locations on the boundary (see Fig. 12) have been taken into account: boundary face
center (L1), boundary edge center (L2) and boundary corner (L3). The local relative absolute error on pressure
for these points has been measured as
erðx; tÞ ¼
jpðx; tÞ � p0ðx; tÞj

p0ðx; tÞ ; ð97Þ
where x denotes the sampling location and p0 is the pressure computed on the reference simulation. Further-
more, the overall performance of the 3D-NSCBC approach has been quantified resorting to the normalized
error measure defined in Eq. (91).
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Fig. 15. Spherical pressure wave test: normalized error on pressure for test-case T1 (a) and test-case T2 (b). Global normalized error on
the top graph (see Eq. (91)) and local relative error at boundary locations L1, L2 and L3. The vertical arrows mark the instants when the
pressure pulse crosses locations L1, L2 and L3, respectively ðtref ¼ 2:8� 10
Figs. 15 and 16 show the relevant results. It should be noted that for t=tref ’ 0:2 the reference solution (big-
ger domain) is expected to become more and more affected by its own boundary and the comparison becomes
meaningless: this is marked by a vertical dashed line limiting the region of interest.
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In general, the maximum error—as per Eq. (91)—occurs, of course, during the period when the boundaries
are crossed by the pressure pulse. With regards to tests T1 (low relaxation) the error level is less than about
0.14% and no significant improvement is observed using 3D-NSCBC approach. On the other hand, when the
relaxation coefficient is increased (T2), the simulation performed resorting to NSCBC hypothesis is character-
ized by a higher error, meaning that the boundary conditions are less transparent and numerical reflected pres-
sure waves have higher amplitude. The 3D-NSCBC, on the other hand, maintains the error almost unchanged,
and the level of boundary reflection is only slightly increased.

In terms of local relative error, the novel approach gives, in general, more accurate results, showing a favor-
able tendency to produce numerical reflected waves of small amplitude; also in this case, when increasing r,
the LODI approximation (standard NSCBC) produces higher reflection, whereas the modified approach
remains significantly more transparent, the level of boundary reflection being marginally affected by the pres-
sure relaxation coefficient r.

Test-case T3 gives the better performance (see Fig. 16). In this particular case, the normalized maximum
error is reduced of about a factor 2 and the local relative error is significantly reduced even when the pressure
pulse crosses the critical locations L2 and L3.

Fig. 17 shows a comparison about the evolution of the pressure wave. The pressure wave was looked at
different time-steps before it had reached the boundary and radial plots were extracted at each time-step (sym-
bols). As expected for a spherical wave, the pulse amplitude decreases continuously as the wave front expands.
Regarding the pressure pulse as a signal traveling with the speed of sound c, the time evolution of pressure can
be rescaled as a radial plot using the following equivalence relation between space and time for such a wave:
f ðr � ct0Þ � f ðr0 � ctÞ with ct0 ¼ r0; ð98Þ
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) r � r0 ¼ r0 � ct ð99Þ
with c ’ 347:6 m=s and r0 the radial distance of the time signal’s sampling location.
Once the pressure front meets the boundary, the LODI assumption is unable to retain the correct physical

information about the tridimensionality of the flow: the pressure front stops behaving as a spherical wave and
reaches the edge and, later on, the corner retaining almost the same amplitude. On the other hand, the 3D-
NSCBC outflow and the proposed edge/corner technique, is remarkably capable of preserving the correct
physical information and the pressure front reaches the boundary edges and corners with the expected reduced
amplitude.

Finally, a qualitative comparison of the computed wave front at three subsequent time-steps is shown in
Fig. 18. The wave front is shown by means of pressure iso-surfaces relevant to a normalized pressure value
of 1000.98 (pref ¼ 101:23 Pa) and is expected to be perfectly spherical; results are relevant to the test-case
T3. The innermost and the outermost surfaces have been chosen in order to ‘‘enclose” the pressure pulse. Spu-
rious numerical reflection is expected to be generated starting from the moment the outermost surface crosses
the boundary; the effects are then visible on what follows, namely, the innermost surface. As it can be
observed, the 3D-NSCBC outflows allow the wave front curvature to be correctly preserved. Negligible reflec-
tion is produced and the wave front undergoes minimal distortion even when the pressure pulse is well outside
the computational domain (Fig. 18(c)). On the contrary, the computation performed resorting to the LODI
assumption is characterized by significant distortion of the core pressure field; even the outermost surface itself
is progressively deformed with local regions where the curvature is reversed (see Fig. 18(e) and (f)).

4.5. Jet flow configurations

We have analyzed some basic test-cases on simple configurations so far, in order to assess the behavior of
the 3D-NSCBC non-reflecting outflows when compared to the standard LODI (NSCBC) assumption. In this



Fig. 18. Spherical pressure wave test (T3): pressure iso-surfaces evolution (iso-value p=pref ¼ 1000:98). 3D-NSCBC non-reflecting outflows
(a–c), standard NSCBC non-reflecting outflows (d–f).
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section we present qualitative results from two simulation of more complex geometries: (a) LES of compress-
ible turbulent free round-jet and (b) LES of compressible turbulent impinging round-jet.

Though only qualitative, as already said, these test were chosen to apply the novel approach on configura-
tions involving non-reflecting inlet/outlet coupling, as well as all the types of edge/corner conditions presented
in the precedent sections.

As just mentioned, both the simulation were performed in turbulent regime resorting to the LES technique.
Within the framework of LES approach, the Navier–Stokes equations are filtered with a low-pass filter, the
low-frequency components of the flow field—those which represent the large scale structures of the flow—
being directly resolved, and the coupling term arising from the non-linear convective term being modeled
by the sub-grid scale (SGS) model. We adopt an implicit filtering approach, therefore, the filter’s cutoff length
D is equal to the local grid spacing, while SGS terms are modeled using the eddy viscosity assumption of the
wall-adapting local eddy-viscosity model proposed by Nicoud and Ducros [10].

4.5.1. Turbulent free round-jet

The computational domain is a box of dimensions 14D� 5D� 5D with D ¼ 0:0026 m the jet diameter
(200� 80� 80 grid points). The grid is uniform along x1 and slightly stretched along x2 and x3 in order to bet-
ter resolve the jet shear layer; transverse refinement was limited to maintain a maximum stretching ratio of
about 1.06 over consecutive cells. The resulting grid spacing is: Dxt=D ’ 0:0527 on the axis, Dxt=D ’ 0:0431
at xt ¼ 	D=2 and Dxt=D ’ 0:1312 at xt ¼ 	2:5D ðt ¼ 2; 3Þ.

The inflow is located at x1 ¼ 0 and the modified subsonic non-reflecting inflow is used, with the velocity
relaxation parameter g5 set at 3.58. The same value was set for the other inlet relaxation parameters:
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g2 ¼ �3:58 and g3 ¼ g4 ¼ g6 ¼ 3:58. The target inlet velocity was imposed using the power law profile for tur-
bulent pipe flow:
Fig. 19
axial p
UðrÞ
U cl

¼ 1� 2r
D

� �1=n

; ð100Þ
where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2 þ x2
3

p
is the distance from the jet axis, U cl is the centerline velocity and the parameter n was set

at 7.4; the ratio between bulk velocity Ub and centerline velocity U cl is about 0.82. The value of Ub was com-
puted fixing the value of the jet’s Reynolds number: ReD ¼ qUbD=l ¼ 23; 000. A correlated random noise [8]
was superimposed to the velocity profile with an intensity of 0.8% of the bulk velocity Ub. The inlet temper-
ature was fixed at 300 K.

All the other boundaries are non-reflecting outflows with pressure relaxation parameter r set at 0.28 and
target pressure equal to 1 atm. The assumed exact transverse terms were set at zero, which seemed a reason-
able approach in consideration of the results obtained in the previous tests. The transverse relaxation param-
eter b was set at 0.19, a typical value of the Mach number for this specific flow, as it has been evaluated from a
precursor simulation performed with b equal to Ub=c. Inflow/outflow edge conditions are used on the four
bottom edges and Inflow/outflow/outflow corner conditions are used on the relevant four joining corners;
Outflow/outflow edge conditions are used on the eight remaining edges and Outflow/Outflow/Outflow corner
conditions on the four top corners (see Fig. 19). The simulation was started from fluid at rest and at reference
condition (1 atm, 300 K) all over the domain.

The developed flow field is depicted in Fig. 19, where the coherent vortical structures are represented resort-
ing to the Q criterion. Pressure and passive scalar distributions over axial planes are shown too. Despite the
fairly small computational domain used, no perturbation coming from the boundaries is observed: the
. Free round-jet with 3D-NSCBC: Q ¼ 0:5 contours (center), passive scalar (left) and pressure (right) distributions over orthogonal
lanes (t ¼ 157:1D=U b).
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pressure field reflects the presence of vortical structures and is smooth and on the target values in regions not
affected by the flow. The compatibility conditions for inlet/outlet edges and corners allow perfect transition
from the inlet to the outflow boundaries without producing any ‘‘square-shaped” pressure pattern. The com-
plex of vortical structures which develops along the jet, is able to leaves the domain through the outflows with-
out being significantly perturbed (see Fig. 20).

On the other hand, the same simulation performed using the standard NSCBC approach—see Fig. 21—
underwent a destabilization of the pressure, originating on an outflow’s corner with a peak of low pressure;
this destabilization caused the jet to collapse toward the low pressure region as it can be observed in the figure.
Moreover, the inlet side is far more noisy and a chessboard pattern is visible on the pressure map over the inlet
plane. Looking at the vortical structures, turbulent structures seem a bit less developed, especially at the begin-
ning of the jet. The problem is clearly linked to the observed inlet pressure noise (see axial pressure map on the
right of Fig. 21), which interacts with the shear layer development and prevents the appearance of Kelvin–
Helmholtz-type instabilities up to a distance of about one diameter from the jet’s nozzle.

From the above results, it is clear that such a simulation is not feasible with standard NSCBC unless: (a) a
greater value of the pressure relaxation coefficient r is used in order to better control the pressure at the
boundary (thus leading to higher reflection); (b) a wider computational domain is used in order to prevent
the jet from falling into a lateral outflow. This notwithstanding, the inlet noise could remain an issue.

4.5.2. Turbulent impinging round-jet

For this last test-case, the computational domain is a box of dimensions 2D� 7D� 7D with D ¼ 0:0026 m
the jet diameter (90� 146� 146 grid points). The grid is refined along x1 in the near-wall region and slightly
stretched along x2 and x3 in order to better resolve the jet shear layer; refinements in the three directions were
limited to maintain a maximum stretching ratio of about 1.04 over consecutive cells. The resulting grid spacing
along x1 is: Dx1=D ’ 0:0443 at the jet’s nozzle exit and Dx1=D ’ 0:0042 at the wall. The grid spacing along x2

and x3 is: Dxt=D ’ 0:033 on the axis, Dxt=D ’ 0:0261 at xt ¼ 	D=2 and Dxt=D ’ 0:1251 at xt ¼ 	3:5D
ðt ¼ 2; 3Þ.

The inflow is located at x1 ¼ 0 with the following inlet relaxation parameters: g3;4;5;6 ¼ �g2 ¼ 1:28. The tar-
get inlet velocity was imposed using the power law profile for turbulent pipe flow (Eq. (100)) with n ¼ 7:215
ðU b=U cl ¼ 0:8247Þ. The value of U b was computed fixing the value of the jet’s Reynolds number:
ReD ¼ qU bD=l ¼ 23; 000. Also in this case, a correlated random noise was superimposed to the velocity pro-
file (intensity 0:8%U b) and the imposed inlet temperature was fixed at 300 K.

The four lateral boundaries are non-reflecting outflows with r ¼ 0:28 and target pressure equal to 1 atm.
The assumed exact transverse terms were set according to the inviscid potential solution for the axisymmetric

stagnation-point flow [16] with b ¼ 0:18, the typical outflow Mach number for this flow. The bottom boundary
is an adiabatic no-slip wall. Inflow/outflow edge conditions are used on the four top edges and inflow/outflow/
outflow corner conditions are used on the relevant four joining corners; outflow/outflow edge conditions are
Fig. 20. Free round-jet with 3D-NSCBC: detail of Q ¼ 0:5 contours at the boundary.



Fig. 21. Free round-jet with standard NSCBC: Q ¼ 0:5 contours (center), passive scalar (left) and pressure (right) distributions over
orthogonal axial planes ðt ¼ 158:1D=UbÞ.

Fig. 22. Impinging round-jet: transverse terms influence on flow distortion. Iso-surfaces of velocity field and wall pressure map in the early
stages of the simulation with standard NSCBC boundary conditions (right) and with 3D-NSCBC (left).
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used on the four lateral edges, wall/outflow edge conditions are used on the four bottom edges and wall/out-
flow/outflow corner conditions are used on the four bottom corners (see Fig. 23). The simulation was started
from fluid at rest and at reference condition (1 atm, 300 K) all over the domain.



Fig. 23. Impinging round-jet: Q ¼ 0:5 contours (center), passive scalar (left) and pressure (right) distributions over orthogonal axial planes
and temperature (bottom) distribution over the impingement wall ðt ¼ 52:4D=UbÞ.
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A preliminary test, made on a quite coarse mesh (20� 42� 42 grid points), is presented in Fig. 22 where the
standard NSCBC non-reflecting outflow is compared with the 3D-NSCBC in terms of flow-field distortion.
Iso-surfaces of velocity and wall pressure map are shown at the moment the big initial toroidal vortex encoun-
ters the domain boundaries. The inclusion of transverse terms allows for a significant reduction in terms of
flow distortion and numerical noise; the latter, can be observed as a small perturbation in the vicinity of
the impingement zone.

The developed flow field is shown by its coherent vortical structures (Q ¼ 0:5 iso-surfaces) in Fig. 23. Pres-
sure and passive scalar distributions over axial planes are projected to the sides and the wall temperature map
is shown at the bottom. No significant numerical perturbation is observed on turbulence development, nor in
the pressure field; moreover, the wall/outflow compatibility conditions exhibit fairly good robustness and
numerical stability.

5. Concluding remarks

A three-dimensional treatment of boundary conditions at edges and corners of fully compressible flow com-
putational domains has been discussed. This very sensitive point of boundary condition was found related to
the treatment of convection and pressure gradient developing in the direction parallel to boundary faces, also
called transverse terms.

A method involving the inclusion of these transverse effects in the computation of the incoming wave ampli-
tude variations is presented. This method removes the original LODI assumption which is, in general, too
stringent to correctly deal with turbulent flows. The work is grounded on the method proposed by Yoo
et al. [24] regarding bidimensional flows, which poses additional problems of wave coupling at the edges
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and corners of three-dimensional computational domain. A systematic approach to solve edges and corners
has been presented and compatibility conditions for inflow/outflow and wall/outflow boundaries discussed.
The general methodology to organize the incoming and outcoming waves approximation is based on the
NSCBC approach by Poinsot and Lele [12].

The novel technique has shown significant reduction of flow distortion and boundary reflection even when
the configuration is characterized by high tridimensionality of the flow field, accompanied by obliquely prop-
agating waves. The obtained 3D-NSCBC non-reflecting outflow, in particular, is characterized by an addi-
tional relaxation parameter for transverse terms damping. This poses the problem of specifying a
reasonable exact solution for the flow under study. The tests performed have revealed a quite interesting fea-
ture on this regard: even when no information is available a priori for the steady solution, transverse relaxa-
tion can still be done toward identically zero terms. However, the optimal choice for the transverse relaxation
parameter is, in general, related to the typical Mach number for the flow considered.

The proposed solution to the edge/corner wave coupling problem, as well as the compatibility conditions
for inflow/outflow and wall/outflow connecting regions, have revealed good numerical stability and low level
of spurious boundary reflection for acoustic waves traveling toward the edges and corners of the computa-
tional domain, thus allowing high boundary transparency even when computing complex flows.

The 3D-NSCBC method is applicable to compressible turbulent flows in the full subsonic range and is then
suitable for a wide range of flow configurations and engineering applications. Furthermore, the method can be
readily extended to chemically reacting flows with some additional development.
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Appendix A. The characteristic form of the Navier–Stokes equations

Eqs. (1)–(4) are more conveniently recast in vector form as follows:
o eU
ot
þ oeF i

oxi
þ oeD i

oxi
¼ 0; ðA:1Þ
where eU ¼ jq qu1 qu2 qu3 qE qZjT is the vector of conservative variables and eF k is the flux vector of
conservative variables along direction xk; vectors eDk represent viscous and diffusive terms only. eF k and eDk are
explicitly written as follows (dij is Kronecker’s delta):
eF k ¼

quk

m1uk þ d1kp

m2uk þ d2kp

m3uk þ d3kp

ðqE þ pÞuk

qZuk

0BBBBBBBB@

1CCCCCCCCA
; eDk ¼

0

�2lA1k

�2lA2k

�2lA3k

�2lujAkj þ qk

�qD oZ
oxk

0BBBBBBBBB@

1CCCCCCCCCA
; ðA:2Þ
the relevant quantities being defined in Section 2.
Let the vector of primitive variables be U ¼ jq u1 u2 u3 p ZjT; following the same analysis proposed

by Hirsch [5] and Thompson [21,22], Eq. (A.1) is then rewritten in terms of primitive variables as
oU

ot
þ F i oU

oxi
þD ¼ 0; ðA:3Þ
where D ¼ P�1oeD i=oxi includes all the viscous and diffusive terms and Fk is the non-conservative Jacobian
matrix relevant to the kth direction. In the present case

http://www.idris.fr/
http://www.crihan.fr/
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Fk ¼

uk d1kq d2kq d3kq 0 0

0 uk 0 0 d1k=q 0

0 0 uk 0 d2k=q 0

0 0 0 uk d3k=q 0

0 d1kcp d2kcp d3kcp uk 0

0 0 0 0 0 uk

0BBBBBBBB@

1CCCCCCCCA
: ðA:4Þ
P ¼ o eU=oU is the Jacobian matrix to switch between primitive and conservative variables:
P ¼

1 0 0 0 0 0

u1 q 0 0 0 0

u2 0 q 0 0 0

u3 0 0 q 0 0
1
2
ukuk qu1 qu2 qu3

1
j 0

Z 0 0 0 0 q

0BBBBBBBB@

1CCCCCCCCA
; ðA:5Þ

P�1 ¼

1 0 0 0 0 0

�u1=q 1=q 0 0 0 0

�u2=q 0 1=q 0 0 0

�u3=q 0 0 1=q 0 0
j
2

ukuk �ju1 �ju2 �ju3 j 0

�Z=q 0 0 0 0 1=q

0BBBBBBBB@

1CCCCCCCCA
ðA:6Þ
with j ¼ c� 1.
Each Fk may be diagonalized resorting to the usual transformation:
S�1
k FkSk ¼ Kk; ðA:7Þ
the eigenvalues being
kk
1 ¼ uk � c; ðA:8Þ

kk
2;3;4;6 ¼ uk; ðA:9Þ

kk
5 ¼ uk þ c; ðA:10Þ
where c is the speed of sound and
Sk ¼

1
2c2

d1k
c2

d2k
c2

d3k
c2

1
2c2 0

� d1k
2qc 1� d1k 0 0 d1k

2qc 0

� d2k
2qc 0 1� d2k 0 d2k

2qc 0

� d3k
2qc 0 0 1� d3k

d3k
2qc 0

1
2

0 0 0 1
2

0

0 0 0 0 0 1

0BBBBBBBBBBB@

1CCCCCCCCCCCA
; ðA:11Þ

S�1
k ¼

0 �d1kqc �d2kqc �d3kqc 1 0

d1kc2 1� d1k 0 0 �d1k 0

d2kc2 0 1� d2k 0 �d2k 0

d3kc2 0 0 1� d3k �d3k 0

0 d1kqc d2kqc d3kqc 1 0

0 0 0 0 0 1

0BBBBBBBBB@

1CCCCCCCCCA
: ðA:12Þ
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Depending on the type of boundary condition considered (face/edge/corner), a different number of charac-
teristic directions should be taken into account (one/two/three) simultaneously: the three cases are summa-
rized in the following sections.
A.1. Characteristic formulation along one direction for faces

Supposing that the boundary is orthogonal to the x1 direction, the characteristic waves considered will
be those traveling along x1; therefore, only F1 needs to be diagonalized and Eq. (A.3) can be then written
as
oU

ot
þ S1K

1S�1
1

oU

ox1

þ F2 oU

ox2

þ F3 oU

ox3

þD ¼ 0: ðA:13Þ
The eigenvalues (i.e. the propagation velocities of the characteristic waves) are
k1 ¼ u1 � c; k2;3;4;6 ¼ u1; k5 ¼ u1 þ c: ðA:14Þ
Following the procedure proposed by Thompson [21], a vector L may be conveniently defined as
L ¼ K1S�1
1

oU

ox1

; ðA:15Þ
whose components Li are the amplitude time variations of the characteristic waves [12]:
L ¼

k1
op
ox1
� qc ou1

ox1


 �
k2 c2 oq

ox1
� op

ox1


 �
k3

ou2

ox1

k4
ou3

ox1

k5
op
ox1
þ qc ou1

ox1


 �
k6

oZ
ox1

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
: ðA:16Þ
Eq. (A.13) is finally rewritten as a function of the wave amplitude variations and the relevant formulation in
terms of conservative variables can be obtained pre-multiplying by P:
oU

ot
þ d þ F2 oU

ox2

þ F3 oU

ox3

þD ¼ 0; ðA:17Þ

o eU
ot
þ Pd þ oeF 2

ox2

þ oeF 3

ox3

þ oeDi

oxi
¼ 0; ðA:18Þ
where
d ¼ S1L ¼

1
c2 L2 þ 1

2
ðL5 þ L1Þ

� �
1

2qc ðL5 � L1Þ
L3

L4

1
2
ðL5 þ L1Þ

L6

0BBBBBBBB@

1CCCCCCCCA
: ðA:19Þ
It should be noted that Eq. (A.17) without transverse derivatives and diffusive terms constitutes the so-
called LODI system of the standard NSCBC approach [12]:



oq
ot þ 1

c2 L2 þ 1
2
ðL5 þ L1Þ

� �
¼ 0;

ou1

ot þ 1
2qc ðL5 � L1Þ ¼ 0;

ou2

ot þ L3 ¼ 0;
ou3

ot þ L4 ¼ 0;
op
ot þ 1

2
ðL5 þ L1Þ ¼ 0;

oZ
ot þ L6 ¼ 0:

8>>>>>>>>><>>>>>>>>>:
ðA:20Þ
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A.3. Characteristic formulation along three directions for corners

Characteristic waves are considered in all the three directions; all the flux matrix are diagonalized and Eq.
(A.3) becomes
oU

ot
þ S1KS�1

1

oU

ox1

þ S2MS�1
2

oU

ox2

þ S3NS�1
3

oU

ox3

þD ¼ 0: ðA:30Þ
The eigenvalues of F1, F2 and F3 are ki, li and mi, respectively:
k1 ¼ u1 � c; k2;3;4;6 ¼ u1; k5 ¼ u1 þ c; ðA:31Þ
l1 ¼ u2 � c; l2;3;4;6 ¼ u2; l5 ¼ u2 þ c; ðA:32Þ
m1 ¼ u3 � c; m2;3;4;6 ¼ u3; m5 ¼ u3 þ c: ðA:33Þ
Wave amplitude time variations are defined as
L ¼ KS�1
1

oU

ox1

; ðA:34Þ

M ¼MS�1
2

oU

ox2

; ðA:35Þ

N ¼ NS�1
3

oU

ox3

; ðA:36Þ
where L and M are expressed by Eqs. (A.16) and (A.26), respectively and N is
N ¼

m1
op
ox3
� qc ou3

ox3


 �
m2

ou1

ox3

m3
ou2

ox3

m4 c2 oq
ox3
� op

ox3


 �
m5

op
ox3
þ qc ou3

ox3


 �
m6

oZ
ox3

0BBBBBBBBBBBBB@

1CCCCCCCCCCCCCA
: ðA:37Þ
Conservation laws in terms of primitive and conservative variables are respectively:
oU

ot
þ d þ eþ f þD ¼ 0; ðA:38Þ

o eU
ot
þ Pd þ Peþ Pf þ oeDi

oxi
¼ 0; ðA:39Þ
where d is expressed by Eq. (A.19), e is expressed by Eq. (A.29) and f is
f ¼ S3N ¼

1
c2 N 4 þ 1

2
N 5 þN 1ð Þ

� �
N 2

N 3

1
2qc N 5 �N 1ð Þ

1
2
N 5 þN 1ð Þ

N 6

0BBBBBBBBB@

1CCCCCCCCCA
: ðA:40Þ
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Appendix B. Computing the transverse terms from conservative variables’ fluxes

When the solver integrates the Navier–Stokes equations written in conservative form, it may be more con-
venient to directly relate the transverse terms vector T to the flux vector eF k. Considering, for instance, a face
boundary orthogonal to x1, Eq. (13) in vector form reads
oU

ot
þ d � T ¼ 0; ðB:1Þ
where �T represents the transverse fluxes and pressure gradients along x2 and x3:
T ¼ �F t oU

oxt
ðt ¼ 2; 3Þ: ðB:2Þ
By definition, the non-conservative Jacobian matrix Fk is related to the flux vector eF k by the following
relation:
PFk oU

oxk
¼ oeF k

oxk
: ðB:3Þ
Pre-multiplying the above equation by P�1, the expression for T then becomes
T ¼ �P�1 oeF t

oxt
ðt ¼ 2; 3Þ ðB:4Þ
with components
T 1 ¼ �
oF t

1

oxt
; ðB:5Þ

T 2 ¼ �
1

q
oF t

2

oxt
� u1

oF t
1

oxt

� �
; ðB:6Þ

T 3 ¼ �
1

q
oF t

3

oxt
� u2

oF t
1

oxt

� �
; ðB:7Þ

T 4 ¼ �
1

q
oF t

4

oxt
� u3

oF t
1

oxt

� �
; ðB:8Þ

T 5 ¼ �ðc� 1Þ oF t
5

oxt
þ ukuk

2

oF t
1

oxt
� uk

oF t
kþ1

oxt

� �
; ðB:9Þ

T 6 ¼ �
1

q
oF t

6

oxt
� Z

oF t
1

oxt

� �
: ðB:10Þ
The same relations for an edge boundary can be easily obtained by considering that, in that case, the vector T
represents fluxes and pressure gradients along the edge direction only.
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